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Experimental design

What do we want to identify?

How do we minimize variation not related to specific treatment?

Can the experiment be statistically validated?

How do we verify the results?

How should we set up this experiment?

What can we afford?
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Experimental design

How should we set up this experiment?

Little / no wounding
Even inoculation
Can do multiple plants at same time

Best way to inoculate bacteria into leaves is probably
vacuum infiltration. 

Use of growth chambers allow controlled environment
that is relatively easy to reproduce. 

True biological replicates are best obtained by completely 
reproducing the experiment for each rep.
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Vacuum infiltrate inoculum to maximize number of cells 
in contact with bacteria for maximal signal
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Submerge plants into inoculum within a bell jar
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Apply strong vacuum to release air from interior of leaves
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After about 60-90 seconds of ‘leaf boiling’, quick release vacuum
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Infiltration is obvious when viewed from underside of leaves.
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Experimental design

What do we want to identify?
How should we set up this experiment?

Genes that are important in resistance response.
Genes that are important in susceptible response.

So we need to know something about timing of defense
and we need to know what host/pathogen combination
to use.

We can use same host, but use different pathogen: 
one induces HR resistance
one induces disease

We also need to add an infiltration control and null control
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Bacterial Blight (Pseudomonas syringae)

Three Phases associated with HR resistance

Adapted from:  Lamb and Dixon  1997  Annu. Rev. Plant Physiol. Plant Mol. Biol.  48 : 251–275
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Experimental design

What do we want to identify?

How do we minimize variation not related to specific treatment?

How should we set up this experiment?

Host is genetically identical for all samples.
Leaves at a developmental stopping stage.
Pool multiple leaflets per sample.
Minimize handling after treatment.
Rapidly freeze tissue in liquid nitrogen immediately

after collecting.
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Experimental design

What do we want to identify?
How do we minimize variation not related to specific treatment?

Can the experiment be statistically validated?

How should we set up this experiment?

Want to determine significance due to treatment.
Want to determine significance due to time.
Want to be able to determine if expression affected by dye.
Want to determine significance due to infiltration.
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Experimental designExperimental design
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Statistical AnalysisStatistical Analysis
•Used median intensity of pixel values minus background for each spot

•Adjusted the data from the two scans using glowess normalization: 
smoothes the scatter plot of Ratio (R/G) versus Intensity (R x G)

•Ran linear mixed effects model in SAS
•Fixed:      Dye and sample (time-treatment combination)
•Random:   Array

•Identified spots whose ratios significantly differed from the mean of the data set 
for the entire experiment (found 3897 using p-value cutoff of 0.000005)

•Log 2  transformed

•Identified genes within the 3897 whose ratios significantly different from the 
mean of the data set when in direct comparisons
(i.e. contrast between 2 specific samples)

•P values adjusted for multiple testing using the FDR criterion 
of Benjamini and Hochberg
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Statistical AnalysisStatistical Analysis
•Used median intensity of pixel values minus background for each spot

Currently we do not subtract background, but flag spots if affected by it
Because background not necessarily related to non-specific binding to 
Spotted DNA, but to non-specific binding to slide coating
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Statistical AnalysisStatistical Analysis
•Used median intensity of pixel values minus background for each spot

•Adjusted the data from the two scans using glowess normalization: 
smoothes the scatter plot of Ratio (R/G) versus Intensity (R x G)

•Log 2  transformed

Removes skew in the data (see plots before and after)

Log 2  transform
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Normalized data shown as M/A plots
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Statistical AnalysisStatistical Analysis
•Used median intensity of pixel values minus background for each spot

•Adjusted the data from the two scans using glowess normalization: 
smoothes the scatter plot of Ratio (R/G) versus Intensity (R x G)

•Ran linear mixed effects model in SAS
•Fixed:      Dye and sample (time-treatment combination)
•Random:   Array

•Log 2  transformed

Log2 Intensityijkl =µ + Arrayi + Dyej + Samplek + εijkl

This equation determines the effect of the means of each independent variable (Array, Dye, 
and Sample) on the dependent variable (log2 Intensity) as well the effect of random noise (ε). 
The model was written in this manner because we were interested in knowing how genes were 
changing due to inoculation with the different bacteria at specific time points of the time 
course experiments, therefore sample is equal to the treatment and time interaction. For 
example, we wanted to know how the plants were responding during both the resistant and 
susceptible interactions at 8 hours post inoculation.
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Statistical AnalysisStatistical Analysis

•Alternatively, one could use the following model to allow 
determine significant genes due to treatment effect as well as 
time effect separately

Log2 Intensityijklm =µ + Arrayi + Dyej + Treatmentk + Timel + 
Treatment*Timekl + εijklm

This equation determines the effect of the means of each independent variable as in the 
previous model but separates the Sample variable into Treatment and Time (Array, Dye, 
Treatment and Time) on the dependent variable (log2 Intensity) as well the effect of random 
noise (ε). The model was written in this manner because we were interested in knowing how 
genes were changing due to inoculation with the different bacteria at specific time points of 
the time course experiments as well as how they changed independently. For example, we 
wanted to know how the plants were responding during both the resistant and susceptible 
interactions at 8 hours post inoculation as well as how this 8 hour time point differed from the 
2 hour time point and how treatment A differed from treatment B.
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Statistical AnalysisStatistical Analysis
•Used median intensity of pixel values minus background for each spot

•Adjusted the data from the two scans using glowess normalization: 
smoothes the scatter plot of Ratio (R/G) versus Intensity (R x G)

•Ran linear mixed effects model in SAS
•Fixed:      Dye and sample (time-treatment combination)
•Random:   Array

•Log 2  transformed

• log2 Y =µ + Array + Dye + Sample + ε

•P values adjusted for multiple testing using the FDR criterion 
of Benjamini and Hochberg

•Identified spots whose ratios significantly differed from the mean of the data set 
for the entire experiment (found 3897 using p-value cutoff of 0.000005)
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Experimental design

What do we want to identify?

How do we minimize variation not related to specific treatment?

Can the experiment be statistically validated?

How should we set up this experiment?

What can we afford?

Soybean cDNA slides ~ $200 for ~ 37,000 genes

Soybean Affy chips ~ $600 for ~ 37,000 genes
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Experimental design

What do we want to identify?

How do we minimize variation not related to specific treatment?

Can the experiment be statistically validated?

How should we set up this experiment?

What can we afford?

How do we verify the results?

Quantitative RT-PCR
Northern blots
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Quality Control

Verifying RNA is not degraded
Verifying good dye incorporation in cDNA



RNA Quality Control Gel

1 2 3 4 5 6 7 8 9 1210 11

28 S

18 S

Image Produced on Agilent BioAnalyzer

RNA in lanes
11 and 12 is 
degrading and
not worth
labelling
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Verifying labelling efficiency using

Cy3 Cy5

cDNA

Cy dye absorbance
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Verifying label efficiency by 
agarose gel electrophoresis

-Protocol courtesy of Jeff Landgraf, Michigan State University

Dry on 70°C heat block

Cy5
label

Cy3
label

Scan

Cy5
Cy3

Cy5
Cy3

Run on 1% agarose 
vertical gel

Loading
dye

Place on glass slide

Samples
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Results of Pseudomonas vs Soybean 



Expression profiling soybean response to Pseudomonas 
syringae reveals new defense-related genes and rapid 

HR-specific down regulation of photosynthesis

Zou et al.  
Molecular Plant-Microbe Interactions  

18 : 1161 - 1174

3897 differentially expressed genes
704 no functional annotation
378 no matches in GenBank
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1000 2000 3000 4000

Trend plot – gene order determined by HR, T8
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HR T24
VIR T24
VIR T8

Looking for trends– plot HRT24, VirT8, VirT24 
keeping gene order in place as determined by HRT8 

Similar results reported for Arabidopsis 
(Tao et al. 2003.   Plant Cell 15: 317-330)
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HR T24
VIR T24
VIR T8

Looking for trends– plot HRT24, VirT8, VirT24 
keeping gene order in place as determined by HRT8 

106 of 304 related to ribosomes
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Induction of specific branches of the phenylpropanoid pathway

Winkel-Shirley (2001) 
Plant Physiology 126:485-493

R vs. control at 8 and 24 hr
(significant level p < 0.0001)
Expression level higher
in R than in control

Expression level lower
in R than in control
No significant changes

isoflavones flavones pigments

R > S
R ≤ S
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Monitor photosynthesis activity
(in collaboration with Evan DeLucia, U of Illinois)
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Mg
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No 
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Monitor photosynthesis activity
(Single leaf assay)
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VIR

MgCl28 hpi

e

Fluorescent measurement of PS II operating efficiency

HR

VIR

MgCl2

HR

VIR

MgCl2

18% reduction
in PSII efficiency
for HR sample

24 hpi
41% reduction
in PSII efficiency
for HR sample
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94 photosynthesis related genes repressed in HR

ee
e
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Heat

ROS

Energy released as:

Reference on HR and photosynthesis: 
Allen et al. 1999  Plant Physiol 119: 1233-1241
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What is the benefit to a plant to stop replacing 
photosynthetic components if attacked by a 

pathogen?

• Reduces glucose synthesis
– Reduces carbon source for pathogen

• Leads to enhanced production of reactive 
oxygen species
– Antimicrobial and strong defense signal 
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